Associate Professor of Machine Learning and Medical Imaging
Publications
2025
T. Dascalu, S. Ramezanzade, A. Bakhshandeh, L. Bjørndal, R. Iurcov, T. Vrtovec, B. Ibragimov, DentAssignNet: Assignment network for dental cast labeling in the presence of dental abnormalities, IEEE Journal of Biomedical and Health Informatics, 2025
B. Lo, B. Møller, C. Igel, S. Wildt, I. Vind, F. Bendtsen, J. Burisch, B. Ibragimov, Improving the real-time classification of disease severity in ulcerative colitis: Artificial intelligence as the trigger for a second opinion, The American Journal of Gastroenterology, 10.14309, 2025
A. Anikina, D. Ibragimova, T. Mustafaev, C. Mello-Thoms, B. Ibragimov, Prediction of radiological decision errors from longitudinal analysis of gaze and image features, Artificial intelligence in medicine (160), 103051, 2025
L. Khaertdinova, T. Shmykova, I. Pershin, A. Laryukov, A. Khanov, D. Zidikhanov, B. Ibragimov, Gaze assistance for efficient segmentation correction of medical images, IEEE Access, 2025
B. L. Møller, S. Amiri, C. Igel, K. K. Wickstrøm, R. Jenssen, M. Keicher, M. F. Azampour, N. Navab, B. Ibragimov, NEMt: Fast Targeted Explanations for Medical Image Models via Neural Explanation Masks, Northern Lights Deep Learning Conference, 2025
2024
A. Kornaev, D. Lvov, I. Pershin, S. Kiselev, D. Afonchikov, I. Bariev, B. Ibragimov, Automatic calculation of cardiometric coefficients on chest X-ray images, IEEE Access, 2024
I. Stebakov, A. Kornaev, E. Kornaeva, N. Litvinenko, Y. Kazakov, O. Ivanov, B. Ibragimov, Artificial neural networks as a natural tool in solution of variational problems in hydrodynamics, IEEE Access, 2024
S. Amiri, R. Karimzadeh, T. Vrtovec, E.G.S. Brandt, H. Thomsen, M. B. Andersen, C. F. Müller, A. B. Rodell, B. Ibragimov, Centerline-guided reinforcement learning model for pancreatic duct identifications, Journal of Medical Imaging, 064002, 2024
E.G.S. Brandt, C. F. Müller, H. Thomsen, A. B. Rodell, B. Ibragimov, M. B. Andersen, Imaging the pancreas with photon-counting CT–A review of normal pancreatic anatomy, European Journal of Radiology, 111736, 2024
G. Podobnik, B. Ibragimov, E. Tappeiner, C. Lee, J.S. Kim, Z. Mesbah, R. Modzelewski, Y. Ma, F. Yang, M. Rudecki, M. Wodziński, P. Peterlin, P. Strojan, T. Vrtovec, HaN-Seg: The head and neck organ-at-risk CT and MR segmentation challenge, Radiotherapy and Oncology, 198, 110410, 2024
S. Amiri, T. Vrtovec, T. Mustafaev, C.L. Deufel, H.S. Thomsen, M.H. Sillesen, E.G.S. Brandt, M.B. Andersen, C.F. Müller, B. Ibragimov, Reinforcement learning‐based anatomical maps for pancreas subregion and duct segmentation, Medical Physics, Early Access, 2024
E.M.C. Huijben, et al., Generating synthetic computed tomography for radiotherapy: SynthRAD2023 challenge report, Medical image analysis, 103276, 2024
T. Dascalu, S. Ramezanzade, A. Bakhshandeh, L. Bjørndal, B. Ibragimov, AI-initiated second opinions: a framework for advanced caries treatment planning, BMC Oral Health, 24 (1), 772, 2024
B. Ibragimov, C. Mello-Thoms: The Use of Machine Learning in Eye Tracking Studies in Medical Imaging: A Review, IEEE Journal of Biomedical and Health Informatics, early access, 2024
B.L. Møller, B.Z.S. Lo, J. Burisch, F. Bendtsen, I. Vind, B. Ibragimov, C. Igel: Building an AI Support Tool for Real-Time Ulcerative Colitis Diagnosis, KI-Künstliche Intelligenz, 1-8, 2024
G. Podobnik, B. Ibragimov, P. Peterlin, P. Strojan, T. Vrtovec, vOARiability: Interobserver and intermodality variability analysis in OAR contouring from head and neck CT and MR images, Medical Physics, 2175-2186, 51 (3), 2024
A. Anikina, R. Karimzadeh, D. Ibragimova, T. Mustafaev, C. Mello-Thoms, B. Ibragimov, Prediction of Radiological Diagnostic Errors from Eye Tracking Data Using Graph Neural Networks and Gaze-Guided Transformers, International Workshop on Graphs in Biomedical Image Analysis at MICCAI, 33-42, 2024
A. Anikina, I. Pershin, T. Mustafaev, B. Ibragimov: Recognition of radiological decision errors from eye movement during chest x-ray readings, Medical Imaging 2024: Image Perception, Observer Performance, and Technology Assessment, 45-48, 2024
D. Ocepek, G. Podobnik, B. Ibragimov, T. Vrtovec, Deep implicit statistical shape models for 3D lumbar vertebrae image delineation, Medical Imaging 2024: Image Processing 12926, 782-788, 2024
2023
S. Ramezanzade, T.L. Dascalu, B. Ibragimov, A. Bakhshandeh, L. Bjørndal, Prediction of Pulp Exposure before Caries Excavation using Artificial Intelligence: Deep Learning-based Image Data versus Standard Dental Radiographs, Journal of Dentistry, 104732, 2023
B. Ibragimov, J. Zhen, E. Ayvali, Deep learning for detection of clinical operations in robot-assisted percutaneous renal access, IEEE Access, 90358-90366, 11, 2023
B. Ibragimov, K. Arzamasov, B. Maksudov, S. Kiselev, A. Mongolin, T. Mustafaev, D. Ibragimova, K. Evteeva, A. Andreychenko, S. Morozov, A 178-clinical-center experiment of integrating AI solutions for lung pathology diagnosis, Scientific Reports, 1135 (13), 2023
I. Pershin, T. Mustafaev, D. Ibragimova, B. Ibragimov, Changes in Radiologists’ Gaze Patterns Against Lung X-rays with Different Abnormalities: A Randomized Experiment, Journal of Digital Imaging, 1-9, 2023
G. Podobnik, P. Strojan, P. Peterlin, B. Ibragimov, T. Vrtovec, HaN-Seg: The head and neck organ‐at‐risk CT & MR segmentation dataset, Medical Physics, 1-11, 2023
D. Alukaev, S. Kiselev, I. Pershin, B. Ibragimov, V. Ivanov, A. Kornaev, I. Titov: Cross-Modal Conceptualization in Bottleneck Models, Conference on Empirical Methods in Natural Language Processing, pages 5241–5253, 2023
F. Yousefirizi, S. Amiri, B. Ibragimov, C. Gowdy, C. Uribe, A. Rahmim, Test-Time Augmentation Towards Improved Cross-Center PET/CT Segmentations by the Swin UNETR, 2023 IEEE Nuclear Science Symposium, Medical Imaging Conference and International Symposium on Room-Temperature Semiconductor Detectors (NSS MIC RTSD), 2023
I. Pershin, T. Mustafaev, B. Ibragimov, Contrastive Learning Approach to Predict Radiologist’s Error Based on Gaze Data, 2023 IEEE Congress on Evolutionary Computation (CEC), 1-6, 2023
G. Podobnik, P. Strojan, P. Peterlin, B. Ibragimov, T. Vrtovec, Multimodal CT and MR Segmentation of Head and Neck Organs-at-Risk, Medical Image Computing and Computer Assisted Intervention–MICCAI, 2023
T. Dascalu, B. Ibragimov, Assignment-theory-augmented neural network for multi-object recognition, Medical Image Computing and Computer Assisted Intervention–MICCAI, 2023
I. Pershin, T. Mustafaev, B. Ibragimov, Contrastive Learning Approach to Predict Radiologist’s Error Based on Gaze Data, 2023 IEEE Congress on Evolutionary Computation (CEC), 1-6, 2023
2022
I. Pershin, B. Maksudov, T. Mustafaev, B. Ibragimov, AI-Based Extraction of Radiologists Gaze Patterns Corresponding to Lung Regions, International Conference on Intelligent Systems Design and Applications, 386-393, 2022
I. Pershin, B. Maksudov, T. Mustafaev, B. Ibragimov, Check for updates AI-Based Extraction of Radiologists Gaze Patterns Corresponding to Lung Regions, Intelligent Systems Design and Applications: 22nd International Conference on Intelligent Systems Design and Applications (ISDA 2022), 716, 2022
Q. Yang, X. Liu, Z. Chen, B. Ibragimov, Y. Yuan, Semi-supervised Medical Image Classification with Temporal Knowledge-Aware Regularization, Medical Image Computing and Computer Assisted Intervention–MICCAI, 2022
S. Ramezanzade, T. Laurentiu, A. Bakhshandah, B. Ibragimov, T. Kvist, L. Bjørndal, The efficiency of artificial intelligence methods for finding radiographic features in different endodontic treatments – a systematic review, Acta Odontologica Scandinavica, 1-14, 2022
E Kornaeva, A Kornaev, A Fetisov, I Stebakov, B Ibragimov, Physics-based loss and machine learning approach in application to non-Newtonian fluids flow modeling, 2022 IEEE Congress on Evolutionary Computation (CEC), 1-8, 2022
I Pershin, M Kholiavchenko, B Maksudov, T Mustafaev, D Ibragimova, B Ibragimov, Artificial Intelligence for the Analysis of Workload-Related Changes in Radiologists’ Gaze Patterns, IEEE Journal of Biomedical and Health Informatics 26 (9), 4541-4550, 119-129, 2022
D Alukaev, S Kiselev, T Mustafaev, A Ainur, B Ibragimov, T Vrtovec, A deep learning framework for vertebral morphometry and Cobb angle measurement with external validation, European Spine Journal, 1-10, 2022
I E I Bekkouch, B Maksudov, S Kiselev, T Mustafaev, T Vrtovec, B Ibragimov, Multi-landmark environment analysis with reinforcement learning for pelvic abnormality detection and quantification, Medical Image Analysis 78, 102417, 2022
M Kholiavchenko, I Pershin, B Maksudov, T Mustafaev, Y Yuan, B Ibragimov, Gaze-based attention to improve the classification of lung diseases, Medical Imaging 2022: Image Processing, 77-80, 2022
T L Dascalu, A Kuznetsov, B Ibragimov, Benefits of auxiliary information in deep learning-based teeth segmentation, Medical Imaging 2022: Image Processing, 805-813, 2022
G Podobnik, P Strojan, P Peterlin, B Ibragimov, T Vrtovec, Parotid gland segmentation with nnU-Net: deployment scenario and inter-observer variability analysis, Medical Imaging 2022: Image Processing, 444-451, 2022
I Pershin, M Kholiavchenko, B Maksudov, T Mustafaev, B Ibragimov, AI-based analysis of radiologist’s eye movements for fatigue estimation: a pilot study on chest X-rays, Medical Imaging 2022: Image Perception, Observer Performance, and Technology Assessment, 240-243, 2022
G Podobnik, B Ibragimov, P Strojan, P Peterlin, T Vrtovec, Segmentation of Organs-At-Risk from Ct and Mr Images of the Head and Neck: Baseline Results, IEEE 19th International Symposium on Biomedical Imaging (ISBI), 1-4, 2022
T Vrtovec, B Ibragimov, Spinopelvic measurements of sagittal balance with deep learning: systematic review and critical evaluation, European Spine Journal, 1-15, 2022
Q Yang, X Liu, Z Chen, B Ibragimov, Y Yuan, Semi-supervised Medical Image Classification with Temporal Knowledge-Aware Regularization, International Conference on Medical Image Computing and Computer-Assisted Intervention, 119-129, 2022
2021
S Kiselev, B Maksudov, T Mustafaev, R Kuleev, B Ibragimov, Automating cardiothoracic ratio measurements in chest X-rays, 2021 International Conference” Nonlinearity, Information and Robotics, 1-4, 2021
C. Yang, X. Guo, M. Zhu, B. Ibragimov, Y. Yuan, Mutual-prototype adaptation for cross-domain polyp segmentation, IEEE Journal of Biomedical and Health Informatics, 25 (10), 3886-3897, 2021
I.E.I. Bekkouch, D.C. Nicolae, A. Khan, S.M.A. Kazmi, A.M. Khattak, B. Ibragimov, Adversarial reconstruction loss for domain generalization, IEEE Access 9, 42424-42437, 2021
I.E.I. Bekkouch, T. Aidinovich, T. Vrtovec, R. Kuleev, B. Ibragimov, Multi-agent shape models for hip landmark detection in MR scans, Medical Imaging 2021: Image Processing 11596, 115960O, 2021
E Jimenez-Solem, et al., Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594 patients, Scientific reports 11 (1), 1-12, 2021
2020
E. Kivotova, B. Maksudov, R. Kuleev, B. Ibragimov, Extracting clinical information from chest x-ray reports: A case study for Russian language, International Conference Nonlinearity, Information and Robotics (NIR), 1-6, 20202
M. Kholiavchenko, B. Maksudov, I. Sirazitdinov, T. Mustafaev, R. Kuleev, B. Ibragimov, Adopting confident learning to eliminate uncertainty in chest X-ray images for lung nodules prediction, International Journal of Radiation Oncology, Biology, Physics 108 (3), e338, 2020
B. Maksudov, S. Kiselev, M. Kholiavchenko, T. Mustafaev, R. Kuleev, B. Ibragimov, Automated localization of lung nodules from chest X-rays with deep neural networks, International Journal of Radiation Oncology, Biology, Physics 108 (3), e294, 2020
Z. Chen, X. Guo, C. Yang, B. Ibragimov, Y. Yuan, Joint spatial-wavelet dual-stream network for super-resolution, International Conference on Medical Image Computing and Computer-Assisted Interventions, 184-193, 2020
A. Tolkachev, I. Sirazitdinov, M. Kholiavchenko, T. Mustafaev, B. Ibragimov, Deep learning for diagnosis and segmentation of pneumothorax: the results on the Kaggle competition and validation against radiologists, IEEE Journal of Biomedical and Health Informatics 25 (5), 1660-1672, 2020
I. Sirazitdinov, K. Kubrak, S. Kiselev, A. Tolkachev, M. Kholiavchenko, B. Ibragimov, Evaluation of deep learning methods for bone suppression from dual energy chest radiography, International Conference on Artificial Neural Networks, 247-257, 2020
H. Liu, Y. Lin, B. Ibragimov, C. Zhang, Low dose 4D-CT super-resolution reconstruction via inter-plane motion estimation based on optical flow, Biomedical Signal Processing and Control 62, 102085, 2020
T. Vrtovec, D. Močnik, P. Strojan, F. Pernuš, B. Ibragimov, Auto‐segmentation of organs at risk for head and neck radiotherapy planning: From atlas‐based to deep learning methods, Medical physics 47 (9), e929-e950, 2020
B. Ibragimov, D.A.S. Toesca, D.T. Chang, Y. Yuan, A.C. Koong, L. Xing, I.R. Vogelius, Deep learning for identification of critical regions associated with toxicities after liver stereotactic body radiation therapy, Medical physics 47 (8), 3721-3731, 2020
B. Ibragimov, D.A.S. Toesca, D.T. Chang, Y. Yuan, A.C. Koong, L Xing, Automated hepatobiliary toxicity prediction after liver stereotactic body radiation therapy with deep learning-based portal vein segmentation, Neurocomputing 392, 181-188, 2020
M Kholiavchenko, I Sirazitdinov, K Kubrak, R Badrutdinova, R Kuleev, B. Ibragimov, Contour-aware multi-label chest X-ray organ segmentation, International journal of computer assisted radiology and surgery 15 (3), 425-436, 2020
2019
Y. Yuan, W. Qin, B. Ibragimov, G. Zhang, B. Han, M.Q.H. Meng, L. Xing, Densely connected neural network with unbalanced discriminant and category sensitive constraints for polyp recognition, IEEE Transactions on Automation Science and Engineering 17 (2), 574-583, 2019
I. Sirazitdinov, M. Kholiavchenko, T. Mustafaev, Y. Yixuan, R. Kuleev, B. Ibragimov, Deep neural network ensemble for pneumonia localization from a large-scale chest X-ray database, Computers & electrical engineering 78, 388-399, 2020
I. Sirazitdinov, M. Kholiavchenko, R. Kuleev, B. Ibragimov, Data augmentation for chest pathologies classification, 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI), 2019
B. Ibragimov, D.A.S. Toesca, Y. Yuan, A.C. Koong, D.T. Chang, L. Xing, Neural networks for deep radiotherapy dose analysis and prediction of liver SBRT outcomes, IEEE journal of biomedical and health informatics 23 (5), 1821-1833, 2019
Y. Yuan, W. Qin, M. Buyyounouski, B. Ibragimov, S. Hancock, B. Han, L Xing, Prostate cancer classification with multiparametric MRI transfer learning model, Medical physics 46 (2), 756-765, 2019
2018
B. Ibragimov, D. Toesca, D.T. Chang, A.C. Koong, L. Xing, Predicting Survival after Liver SBRT by Deep Learning-Based Analysis of Treatment Dose Plans, International Journal of Radiation Oncology, Biology, Physics 102 (3), e56, 2018
H. Liu, J. Xu, Y. Wu, Q. Guo, B. Ibragimov, L. Xing, Learning deconvolutional deep neural network for high resolution medical image reconstruction, Information Sciences 468, 142-154, 2018
B, Ibragimov, D, Toesca, D, Chang, Y, Yuan, A, Koong, L, Xing, Development of deep neural network for individualized hepatobiliary toxicity prediction after liver SBRT, Medical physics 45 (10), 4763-4774, 2018
B. Ibragimov, D.A.S. Toesca, Y. Yuan, A.C. Koong, D.T. Chang, L. Xing, Deep 3D dose analysis for prediction of outcomes after liver stereotactic body radiation therapy, International Conference on Medical Image Computing and Computer-Assisted Interventions, 2018
Y. Yuan, W. Qin, B. Ibragimov, B. Han, L. Xing, RIIS-DenseNet: rotation-invariant and image similarity constrained densely connected convolutional network for polyp detection, International Conference on Medical Image Computing and Computer-Assisted Interventions, 2018
D. Močnik, B. Ibragimov, L. Xing, P. Strojan, B. Likar, F. Pernuš, T. Vrtovec, Segmentation of parotid glands from registered CT and MR images, Physica Medica 52, 33-41, 2018
B. Ibragimov, Y. Yuan, D.A.S. Toesca, D.T. Chang, A.C. Koong, L Xing, Convolutional Neural Networks for Identifying Correlation Between Dose Patterns Associated with Poor Survival and Early Local Recurrence After Metastatic Liver SBRT, Medical Physics 45 (6), E415-E415, 2018
W. Qin, J. Wu, F. Han, Y. Yuan, W. Zhao, B. Ibragimov, J. Gu, L. Xing, Superpixel-based and boundary-sensitive convolutional neural network for automated liver segmentation, Physics in Medicine & Biology 63 (9), 095017, 2018
D.A.S. Toesca, B. Ibragimov, A.J. Koong, L. Xing, A.C. Koong, D.T. Chang, Strategies for prediction and mitigation of radiation-induced liver toxicity, Journal of radiation research 59 (suppl_1), i40-i49, 2018